SYNTHESIS OF CYANO DERIVATIVES
 WITH DIAZAQUATERPHENYL SKELETON

Štefan Marchalín and Josef Kuthan
Department of Organic Chemistry,
Prague Institute of Chemical Technology, 16628 Prague 6

Cyclocondensation of 3-aryl-2-arylmethylene-3-oxopropanenitriles I with 4,4'-diacetylbiphenyl (II) in the presence of ammonium acetate gives para-substituted $4^{\prime \prime}$-acetyl-3,5-diphenyl-2-aza$1: 1^{\prime}, 4^{\prime}: 1^{\prime \prime}$-terphenyls $I I I$ and $4,4^{\prime \prime \prime}$-dicyano- $3,3^{\prime \prime \prime}, 5,5^{\prime \prime \prime}$-tetraphenyl-2, $2^{\prime \prime \prime}$-diaza- $1: 1^{\prime}, 4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime}: 1^{\prime \prime \prime}$ --quaterphenyls $I V$. Analogous reaction of the acetyl derivative $I I I e$ with the oxonitriles $I e$ and I_{a} -afforded the corresponding products $I V e$ and V.

Recently, 3-aryl-2-arylmethylene-3-oxopropanenitriles of the type I have been employed in the synthesis of condensed $4 H$-pyrans ${ }^{1-3}$, 4-aryl-3-cyano-2-pyridones ${ }^{4,5}, 4,6$-diaryl-3,5-dicyano-2-thioxopyridines ${ }^{6,7}$ and unsymmetrically substituted 1,4 -dihydropyridines ${ }^{8,9}$. In our preceding communications we reported the preparation of cycloalkeno[b]pyridines ${ }^{10}$ and 2,4,6-triaryl-3-cyanopyridines ${ }^{11}$ by cyclocondensations of the oxonitrile I with carbonyl methylene components in the presence of ammonium acetate. In this context, it was of interest whether this synthetic scheme might be applied to $4,4^{\prime}$-diacetylbiphenyl (II) which should give conjugated pyridine derivatives of the polyphenylene type.

II

We found that cyclocondensation reaction of 3-aryl-2-arylmethylene-3-oxopropanenitriles $I a-I f$ with 4,4'-diacetylbiphenyl ($I I$) in the presence of ammonium acetate afforded a mixture of para-substituted 4"-acetyl-3,5-diphenyl-2-aza-1 : $: 1^{\prime}, 4^{\prime}: 1^{\prime \prime}$-terphenyls IIIa-IIIf and $4,4^{\prime \prime \prime}$-dicyano- $3,3^{\prime \prime \prime}, 5,5^{\prime \prime \prime}$-tetraphenyl-2, $2^{\prime \prime \prime}$-diaza-$-1: 1^{\prime}, 4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime}: 1^{\prime \prime \prime}$-quaterphenyls $I V a-I V f$. Crystallization from dimethylforma-

Table I
para-Substituted $4^{\prime \prime}$-acetyl-3,5-diphenyl-2-aza-1:1', $4^{\prime}: 1^{\prime \prime}$-terphenyls IIIa - IIIf

Compound $\left(\right.$ yield, $\%$) ${ }^{b}$	R ${ }^{1}$	R^{2}	M.p., ${ }^{\circ} \mathrm{C}^{a}$	Formula (mol.wt.)	Calculated/Found		
					\% C	\% H	\% N
$\begin{aligned} & I I I a \\ & (41) \end{aligned}$	H	H	253-255	$\underset{(450 \cdot 6)}{\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{aligned} & 85 \cdot 30 \\ & 85 \cdot 22 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 4.96 \end{aligned}$	$\begin{aligned} & 6 \cdot 22 \\ & 6 \cdot 27 \end{aligned}$
$\begin{aligned} & I I I b \\ & (36) \end{aligned}$	H	CH_{3}	299-301	$\underset{(464 \cdot 6)}{\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{aligned} & 85 \cdot 31 \\ & 85 \cdot 03 \end{aligned}$	$\begin{aligned} & 5 \cdot 22 \\ & 5 \cdot 37 \end{aligned}$	$\begin{aligned} & 6.03 \\ & 5.97 \end{aligned}$
$\begin{aligned} & I I I c \\ & (19) \end{aligned}$	CH_{3}	H	250-252	$\underset{(464 \cdot 6)}{\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{aligned} & 85 \cdot 31 \\ & 85 \cdot 01 \end{aligned}$	$\begin{aligned} & 5 \cdot 22 \\ & 5 \cdot 30 \end{aligned}$	$\begin{aligned} & 6 \cdot 03 \\ & 6 \cdot 10 \end{aligned}$
$\begin{aligned} & \text { IIId } \\ & (19) \end{aligned}$	CH_{3}	CH_{3}	280-282	$\underset{(478 \cdot 6)}{\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{aligned} & 85 \cdot 32 \\ & 84 \cdot 55 \end{aligned}$	$\begin{aligned} & 5.49 \\ & 5.64 \end{aligned}$	$\begin{gathered} 5 \cdot 85 \\ 5 \cdot 60 \end{gathered}$
$\begin{aligned} & \text { IIIe } \\ & (57) \end{aligned}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	222-224	$\underset{(526 \cdot 7)}{\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{aligned} & 86.66 \\ & 86.50 \end{aligned}$	$\begin{aligned} & 4.99 \\ & 5.09 \end{aligned}$	$\begin{aligned} & 5 \cdot 32 \\ & 6.26 \end{aligned}$
$\begin{aligned} & \text { IIIf } \\ & (46) \end{aligned}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	207-210	$\underset{(540 \cdot 7)}{\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{aligned} & 86 \cdot 63 \\ & 86 \cdot 68 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 5 \cdot 29 \end{aligned}$	$\begin{aligned} & 5.18 \\ & 5.09 \end{aligned}$

[^0]mide or column chromatography on silica gel in chloroform gave the compounds III and $I V$ in the yields $19-57 \%$ and $13-28 \%$, respectively (see Tables I and II). The reaction conditions were first investigated for the reaction of 2-benzylidene-3-(4-bi-phenylyl)-3-oxopropanenitrile (Ie) with the diacetyl derivative $I I$. The reaction course is substantially influenced by the solvent. In aprotic solvents such as acetonitrile, benzene or tetrahydrofuran, no pyridine derivatives IIIa and IVe are formed and the

Table II
para-Substituted 4,4"'-dicyano-3,3"',5,5"'-tetraphenyl-2,2"'-diaza-1:1', $4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime}: 1^{\prime \prime \prime}$-quaterphenyls $I V$

Compound (Yield, \%) ${ }^{b}$	R^{1}	R^{2}	M.p., ${ }^{\circ} \mathrm{C}^{\boldsymbol{a}}$	Formula (Mol.wt.)	Calculated/Found		
					$\% \mathrm{C}$	\% H	$\% \mathrm{~N}$
IVa	H	H	342-344	$\begin{gathered} \mathrm{C}_{48} \mathrm{H}_{30} \mathrm{~N}_{4} \\ (662 \cdot 8) \end{gathered}$	86.97	$4 \cdot 57$	8.45
(13)					86.79	$4 \cdot 64$	8.52
IVb	H	CH_{3}	345-346	$\begin{gathered} \mathrm{C}_{50} \mathrm{H}_{34} \mathrm{~N}_{4} \\ (690 \cdot 9) \end{gathered}$	86.92	$4 \cdot 97$	$8 \cdot 11$
(17)					$86 \cdot 80$	$5 \cdot 26$	7.96
IVC	CH_{3}	H	325-327	$\begin{gathered} \mathrm{C}_{50} \mathrm{H}_{34} \mathrm{~N}_{4} \\ (690 \cdot 9) \end{gathered}$	86.92	4.97	$8 \cdot 11$
(18)					86.71	$5 \cdot 36$	$8 \cdot 17$
IVd	CH_{3}	CH_{3}	>370	$\begin{gathered} \mathrm{C}_{52} \mathrm{H}_{38} \mathrm{~N}_{4} \\ (718 \cdot 9) \end{gathered}$	86.87	$5 \cdot 34$	7.79
(28)					$86 \cdot 55$	$5 \cdot 43$	7.62
IVe	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$335-337$	$\begin{gathered} \mathrm{C}_{60} \mathrm{H}_{38} \mathrm{~N}_{4} \\ (815 \cdot 0) \end{gathered}$	88.42	$4 \cdot 71$	6.87
(24)					87.89	$4 \cdot 66$	$6 \cdot 63$
IVf	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	344-346	$\underset{(843 \cdot 1)}{\mathrm{C}_{62} \mathrm{H}_{42} \mathrm{~N}_{4}}$	88.32	$5 \cdot 03$	6.65
(12)					$88 \cdot 15$	$5 \cdot 17$	6.49

[^1]unreacted $I I$ was quantitatively recovered from the reaction mixture. A mixture of ethanol and dimethylformamide proved to be the medium of choice: the products IIIe and IVe separate from the reaction mixture, their ratio depending on the ratio of the starting compounds. Reaction of two mols of $I e$ with one mol of $I I$ gave 57% of $I I I e$ and 24% of $I V e$, whereas equimolar amounts of the reactants afforded 32% of $I I I e$ and 4% of $I V e$. The assumption that the acetyl derivatives III are intermediates in the preparation of para-substituted $4,4^{\prime \prime \prime}$-dicyano- $3,3^{\prime \prime \prime}, 5,5^{\prime \prime \prime}$-tetraphenyl- $2,2^{\prime \prime \prime}$ --diaza-1: $1^{\prime}, 4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime}: 1^{\prime \prime \prime}$-quaterphenyls $I V$ was confirmed by cyclocondensation of compound $I I I e$ with the precursors $I a$ and $I e$ in the presence of ammonium acetate. Both reactions gave the corresponding polyphenylene pyridines, i.e. compound IVe and the unsymmetrically substituted derivative V. For the reasons discussed in our preceding work ${ }^{11}$ the attempted isolation of the possible primarily formed dihydro derivatives failed.

In the common solvents, compounds $I V a-I V f$ and V exhibit a marked blue fluorescence which occurs also upon UV-irradiation of the solid substances. Both IR and ${ }^{1} \mathrm{H} N \mathrm{~N} R$ spectra agree with the structures $I I I-V$. The acetyl derivatives (Table III) have IR-bands due to $\mathrm{C} \equiv \mathrm{N}$ stretching vibrations at $2220-2222 \mathrm{~cm}^{-1}$, $\mathrm{C}=\mathrm{O}$ vibrations at $1672-1682 \mathrm{~cm}^{-1}$ and bands characteristic of $\nu(\mathrm{C}=\mathrm{C})_{\text {arom }}$ and a pyridine skeleton. The ${ }^{1} \mathrm{H}$ NMR spectra display a singlet of an acetyl group at $\delta 2 \cdot 56-2 \cdot 63$. The para-substituted $4,4^{\prime \prime \prime}$-dicyano-3,3"',5,5"'-tetraphenyl-2, $2^{\prime \prime \prime}$ --diaza-1 : $4^{\prime}, 4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime}: 1^{\prime \prime \prime}$-quaterphenyls $I V$ (Table IV) and V showed $\mathrm{C} \equiv \mathrm{N}$ bands at $2119-2221 \mathrm{~cm}^{-1}$ and bands due to benzene and pyridine rings at $1446-1612$ cm^{-1} in the IR spectra. Their ${ }^{1} \mathrm{H}$ NMR spectra (Table IV) exhibited complex multiplets at $\delta 7 \cdot 17-8.30$. Compounds $I I I$ and $I V$ showed signals at $\delta 8.22-8.47$ and $\delta 7.86-8.23$ which were ascribed to the ortho-protons $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$, and H_{c} on the basis of comparison with the spectra of 4-aryl-2-(4-biphenylyl)-3-cyanocycloalkeno[b]pyridines ${ }^{10}, 2,4,6$-triaryl-3-cyanopyridines ${ }^{11}$ and 4, 4^{\prime}-diacetylbiphenyl(II). The characterter of these signals indicates that, in solution, the rings are not coplanar, similarly to the case of 2,4,6-triaryl-3-cyanopyridines ${ }^{11}$.
Table III
Infrared and ${ }^{1} \mathrm{H}$ NMR data for acetyl derivatives IIIa-IIIf

Compound	$\tilde{v}_{\text {max }}, \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)^{a}$				$\delta_{\mathrm{H}}, \mathrm{ppm}\left(\mathrm{C}^{2} \mathrm{HCl}_{3}, 31^{\circ} \mathrm{C}\right)^{\boldsymbol{b}}$				
	$v(=\mathrm{C}-\mathrm{H})$	$\nu(\mathrm{C} \equiv \mathrm{N})$	$\nu(\mathrm{C}=\mathrm{O})$	$\nu(\mathrm{C}=\mathrm{C})$ and $v(\mathrm{C}=\mathrm{N})$	$\mathrm{H}_{\mathrm{a}, \mathbf{a}{ }^{\text {c }} \text { c }}$	$\mathbf{H}_{\mathbf{b}, \mathrm{b}^{\prime}}+\mathrm{H}_{\mathbf{c}, \mathrm{c}^{\prime}}$	$\mathrm{Harom}^{\text {a }}$	$\mathrm{CH}_{3} \mathrm{CO}$	CH_{3}
IIIa	3016 w	2220 m	1680 s	$\begin{array}{llll} 1605 \mathrm{~s} & 1556 \mathrm{w} & 1492 \mathrm{~m} \\ 1585 \mathrm{~s} & 1531 \mathrm{~s} & 1446 \mathrm{w} \\ 1574 \mathrm{~s} & & \end{array}$	8.25 d	$7.90-8.12 \mathrm{~m}$	$7.28-7.88 \mathrm{~m}$	2.63 s	-
IIIb	$\begin{aligned} & 3068 \mathrm{w} \\ & 3040 \mathrm{w} \end{aligned}$	2220 s	1672 s	$\begin{aligned} & 1602 \mathrm{~m} \\ & 1528 \mathrm{w} \\ & 1583 \mathrm{~s} \\ & 1525 \mathrm{w} \\ & 157450 \mathrm{~m} \\ & 157 \mathrm{~s} \\ & 1512 \mathrm{~m} \end{aligned}$	8.22 d	$7.92-8.13 \mathrm{~m}$	$7.24-7.84 \mathrm{~m}$	2.60 s	2.43 s
IIIc	3016 m	2222 m	1681 s	$\begin{array}{llll} 1606 \mathrm{~s} & 1532 \mathrm{~s} & 1495 \mathrm{~m} \\ 1584 \mathrm{~s} & 1514 \mathrm{~m} & 1447 \mathrm{w} \\ 1570 \mathrm{~s} & & \end{array}$	8.24 d	$7.86-8.11 \mathrm{~m}$	$7.25-7.84 \mathrm{~m}$	2.62 s	2.43 s
IIId	$\begin{aligned} & 3080 \mathrm{w} \\ & 3038 \mathrm{w} \end{aligned}$	2220 s	1680 s	$\begin{aligned} & 1603 \mathrm{~m} \quad 1569 \mathrm{~m} 1510 \mathrm{~m} \\ & 1584 \mathrm{~s} \quad 1530 \mathrm{~m} \end{aligned}$	8.46 d	$8.02-8.23 \mathrm{~m}$	7.19-8.02 m	2.56 s	2.31 s
IIIe	3010 w	2221 m	1681 s	$\begin{array}{llll} 1605 \mathrm{~s} & 1556 \mathrm{w} & 1489 \mathrm{~m} \\ 1578 \mathrm{~s} & 1530 \mathrm{~s} & 1450 \mathrm{w} \end{array}$	8.26 d	$7.94-8.20 \mathrm{~m}$	$7 \cdot 30-7 \cdot 88 \mathrm{~m}$	2.63 s	-
IIIf	3012 m	2220 m	1682 s	$\begin{array}{llll} 1605 \mathrm{~s} & 1530 \mathrm{~s} & 1489 \mathrm{~m} \\ 1578 \mathrm{~s} & 1512 \mathrm{~m} & 1449 \mathrm{w} \\ 1555 \mathrm{~m} \end{array}$	8.28 d	7.93-8.20 m	7.29-7.88 m	2.63 s	2.46 s

${ }^{a}$ Compounds IIIb and IIIId measured by the KBr technique; ${ }^{b}$ compound $I I I d$ measured in pentadeuteriopyridine at $80^{\circ} \mathrm{C} ;{ }^{c} J=8.2 \mathrm{~Hz}$.

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

Infrared and ${ }^{1} \mathrm{H}$ NMR data for polyphenylene pyridines IVa-IVf						
	$\tilde{v}_{\text {max }}, \mathrm{cm}^{-1}(\mathrm{KBr})$			$\delta_{\mathrm{H}}, \mathrm{ppm}^{a}$		
	$\boldsymbol{v}(=\mathrm{C}-\mathrm{H})$	$v(\mathrm{C} \equiv \mathrm{N})$	$\nu(\mathrm{C}=\mathrm{C})$ and $\nu(\mathrm{C}=\mathrm{N})$	$\mathrm{H}_{\mathrm{a}, \mathrm{a}^{\prime}}+\mathrm{H}_{\mathrm{b}, \mathrm{b}^{\prime}{ }^{\text {b }} \text {, }}$	$\mathrm{H}_{\text {a rom }}$	CH_{3}
IVa	$\begin{aligned} & 3066 \mathrm{w} \\ & 3040 \mathrm{w} \end{aligned}$	2220 s	$\begin{array}{lll} 1608 \mathrm{~s} & 1526 \mathrm{~s} & 1453 \mathrm{w} \\ 1586 \mathrm{~s} & 1493 \mathrm{~s} & 1446 \mathrm{~m} \\ 1573 \mathrm{~s} & & \end{array}$	8.28 d	$7 \cdot 18-8.09 \mathrm{~m}$	-
$I V b$	$\begin{aligned} & 3092 \mathrm{w} \\ & 3037 \mathrm{w} \end{aligned}$	2219 s	$\begin{array}{lll} 1612 \mathrm{~m} & 1527 \mathrm{~s} & 1482 \mathrm{w} \\ 1587 \mathrm{~s} & 1516 \mathrm{~m} & 1454 \mathrm{w} \\ 1575 \mathrm{~s} & 1498 \mathrm{~m} \end{array}$	8.44 d	$7 \cdot 17-8 \cdot 30 \mathrm{~m}$	2.28 s
IVC	$\begin{aligned} & 3070 \mathrm{w} \\ & 3035 \mathrm{w} \end{aligned}$	2220 s	$\begin{array}{llll} 1610 \mathrm{w} & 1532 \mathrm{~s} & 1496 \mathrm{~m} \\ 1583 \mathrm{~s} & 1515 \mathrm{~m} & 1448 \mathrm{w} \\ 1570 \mathrm{~s} & & \end{array}$	8.47 d	$7.23-8.20 \mathrm{~m}$	$2 \cdot 30 \mathrm{~s}$
IVd	3032 w	2221 s	$\begin{aligned} & 1612 \mathrm{~m} \quad 1568 \mathrm{~s} \quad 1509 \mathrm{~s} \\ & 1580 \mathrm{~s} \quad 1526 \mathrm{~s} \end{aligned}$	8.35 d	$7 \cdot 19-8 \cdot 15 \mathrm{~m}$	2.31 s
IVe	$\begin{aligned} & 3060 \mathrm{w} \\ & 3035 \mathrm{w} \end{aligned}$	2119 s		-	c	-
IVf	3032 w	2220 s	$\begin{array}{lll} 1610 \mathrm{~s} & 1528 \mathrm{~s} & 1490 \mathrm{~s} \\ 1576 \mathrm{~s} & 1510 \mathrm{~s} & 1450 \mathrm{~m} \\ 1556 \mathrm{~m} & & \end{array}$	-	c	-

${ }^{a}$ Compound IVa measured in hexadeuteriodimethyl sulfoxide at $140^{\circ} \mathrm{C}$; other compounds in pentadeuteriopyridine at $80^{\circ} \mathrm{C} ;{ }^{b} \mathrm{~J}=8 \cdot 2 \mathrm{~Hz}$: ${ }^{c}$ not measured because of insufficient solubility.

EXPERIMENTAL

Temperature data are uncorrected. Melting points were determined on a Boetius block. Spectral data were obtained with Perkin-Elmer 325 (IR) and Varian XL-100 (${ }^{1} \mathrm{H}$ NMR; internal standard tetramethylsilane) instruments. The 3 -aryl-2-arylmethylene-3-oxopropanenitriles $I a-I d$ were prepared by Knoevenagel condensation of 3 -aryl-3-oxopropanenitriles ${ }^{12}$ with the corresponding benzaldehydes according to ref. ${ }^{13}$. The following melting points were observed for the obtained compounds (reported values in parentheses): $I a: 84-85^{\circ} \mathrm{C}\left(83 \cdot 5-85 \cdot 5^{\circ} \mathrm{C}\right.$, ref. ${ }^{14}$) $, I b: 89-90^{\circ} \mathrm{C}$ $\left(89-90^{\circ} \mathrm{C}\right.$, ref. ${ }^{14}$), Ic: $97-98^{\circ} \mathrm{C},\left(95-96^{\circ} \mathrm{C}\right.$, ref. ${ }^{15}$), and $I d: 91-92^{\circ} \mathrm{C}$. Preparation of the oxonitriles $I e$ and $I f$ is described in our earlier paper ${ }^{16} .4,4^{\prime}$-Diacetylbiphenyl (II) was obtained by acetylation of biphenyl according to ref..17, m.p. $190-192^{\circ} \mathrm{C}$ (reported ${ }^{17}$ m.p. $191^{\circ} \mathrm{C}$). Infrared spectrum (chloroform), $\mathrm{cm}^{-1}: 1685 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR spzetrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta(\mathrm{ppm}): 2.66$ $\left(\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{COCH}_{3}\right), 7.72\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{meta}}, J=8.2 \mathrm{~Hz}\right), 8.07\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}_{\text {ortho }}, J=8.2 \mathrm{~Hz}\right)$.
para-Substituted 4,4"-Dicyano-3,3"',5,5"-tetraphenyl-2,2"'-diaza-1:1', $4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime}: 1^{\prime \prime \prime}-$ -quaterphenyls $I V$

A mixture of oxonitrile I (2 mmol), 4,4-diacetylbiphenyl ($I I$; 1 mmol), ammonium acetate (2 mmol), ethanol (5 ml), and dimethylformamide (5 ml) was heated to $160^{\circ} \mathrm{C}$ for 14 h . After cooling, the precipitate was filtered, washed with water and ethanol and processed according to one of the following procedures.
A) The pyridines IVa, IVef and IV, were obtained by crystallization from dimethylformamide. The mother liquor was diluted with water, the precipitate filtered, washed with ethanol and the thus-obtained respective acetyl derivatives IIIa, IIIe, and IIIf were crystallized from an appropriate solvent.
B) After crystallization from toluene, the mixture was separated by chromatography on a column of silica gel in chloroform (detection by iodine vapours and UV light). The polyphenylene pyridines ($I V b-I V d$) were obtained as a first fraction; further elution afforded the acetyl derivatives (IIIb-IIId). The yields of $I I I$ and $I V$, solvents for crystallization, melting points, and analytical data are given in Tables I and II.
$3,3^{\prime \prime \prime}-$ Bis(4-biphenylyl) $-4,4^{\prime \prime \prime}$-dicyano- $5,5^{\prime \prime \prime}$-diphenyl-2, "'"-diaza-1:1', $4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime \prime}: 1^{\prime \prime \prime}$-quaterphenyl
(IVe)

A mixture of acetyl derivative IIIe $(0.3 \mathrm{~g})$, oxonitrile $I e(0.18 \mathrm{~g})$, ammonium acetate (0.03 g), ethanol (5 ml) and dimethylformamide (5 ml) was heated to $160^{\circ} \mathrm{C}$ for 16 h . The precipitate was filtered, washed with ethanol and crystallized from dimzthylformamide, yielding $0.19 \mathrm{~g}(41 \%)$ of IVe, m.p. $335-337^{\circ} \mathrm{C}$. Its IR and ${ }^{1} \mathrm{H}$ NMR spectra were identical with those of the compound prepared by cyclocondensation of Ie with $I I$.

$$
\text { 3-(4-Biphenylyl)-4,4"'-dicyano-3"',5,5"'-triphenyl-2,2"'-diaza-1:1 } 1^{\prime}, 4^{\prime}: 1^{\prime \prime}, 4^{\prime \prime}: 1^{\prime \prime \prime} \text {-quaterphenyl (} V \text {) }
$$

A mixture of acetyl derivative IIIe (0.5 g), oxonitrile $I a(0.22 \mathrm{~g})$, ammonium avetate $(0.07 \mathrm{~g})$, ethanol (5 ml), and dimethylformamide (2 ml) was heated to $160^{\circ} \mathrm{C}$ for 12 h . The separated precipitate was filtered, washed successively with water and ethanol and crystallized from benzene, affording $0.34 \mathrm{~g}(48 \%)$ of V, m.p. $272-274^{\circ} \mathrm{C}$. For $\mathrm{C}_{54} \mathrm{H}_{34} \mathrm{~N}_{4}$ (738.9) calculated: $87.77 \% \mathrm{C}$, $4.65 \% \mathrm{H}, 7.58 \mathrm{~N}$; found: $87.50 \% \mathrm{C}, 4.60 \% \mathrm{H}, 7.65 \% \mathrm{~N}$. IR spectrum (KBr), $\mathrm{cm}^{-1}: 3060 \mathrm{w}$, $3035 \mathrm{w}(=\mathrm{C}-\mathrm{H}), 2218 \mathrm{~s}(\mathrm{C} \equiv \mathrm{N}), 1610 \mathrm{w}, 1583 \mathrm{~s}, 1570 \mathrm{~s}, 1556 \mathrm{~m}, 1525 \mathrm{~s}, 1486 \mathrm{~m}, 1444 \mathrm{w}$ ($\mathrm{C}=\mathrm{C}$ and pyridine skeleton). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta(\mathrm{ppm}): 7 \cdot 27-7 \cdot 38 \mathrm{~m}\left(\mathrm{H}_{\text {arom }}\right)$.

The authors are indebted to the staff of the Department of Elemental Analysis (Dr L. Helesic, Head) for performing the analyses. Their thanks are due also to the staff of the Central Laboratories of this Institute for spectral measurements.

REFERENCES

1. Abdou S., Fahmy S. M., Sadek K. U., Elnagdi M. H.: Heterocycles 16, 2177 (1981).
2. Daboun H. A. F., Abdou S. E., Hussein M. M., Elnagdi M. H.: Synthesis 1982, 502.
3. Elfahham H. A., Abdel-Galil F. M., Ibraheim Y. R., Elnagdi M. H.: J. Hererocycl. Chem. 20, 667 (1983).
4. Seoane C., Soto J. L., Zamorano P., Quinteiro M.: J. Heterocycl. Chem. 18, 309 (1981).
5. Khalifa M. A. E., Elbanany A. A., Tammam G. H.: Curr. Sci. 51, 1112 (1982).
6. Rubio M. J., Seoane C., Soto J. L.: Heterocycles 20, 783 (1983).
7. Encinas M. J. R., Seoane C., Soto J. L.: Justus Liebigs Ann. Chem. 1984, 213.
8. Elgemeie G. E. H., Elees S. A., Elsakka I., Elnagdi M. H.: Z. Naturforsch. 38B, 639 (1983).
9. Marchalin S., Kuthan J.: This Journal 48, 3123 (1983).
10. Marchalín S., Kuthan J.: This Journal 49, 1395 (1984).
11. Marchalín S., Kuthan J.: This Journal, in press.
12. Eby C. J., Hauser C. R.: J. Amer. Chem. Soc. 79, 723 (1957).
13. Kauffmann H.: Ber. Deutsch. Chem. Ges. 50, 515 (1917).
14. Umeda T., Hirai E.: Chem. Pharm. Bull. 29, 2753 (1981).
15. Quinteiro M., Seoane C., Soto J. L.: J. Heterocycl. Chem. 15, 57 (1978).
16. Marchalín S., Trška P., Kuthan J.: This Journal 49, 421 (1984).
17. Long L. M., Henze H. R.: J. Amer. Chem. Soc. 63, 1939 (1941).

Translated by M. Tichý.

[^0]: ${ }^{a}$ Compounds IIIa, IIIc, IIIe, and IIIf were crystallized from ethanol-benzene, IIIb and IIId from benzene; ${ }^{b}$ based on diacetyl derivative II.

[^1]: ${ }^{a}$ Compounds IVa, IVe, and IVf were crystallized from dimethylformamide, IVb-IVd from benzene; ${ }^{b}$ based on the diacetyl derivative $I I$.

